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Purpose: This paper studies the feasibility of developing an automatic anatomy segmentation

(AAS) system in clinical radiology and demonstrates its operation on clinical 3D images.

Methods: The AAS system, the authors are developing consists of two main parts: object recogni-

tion and object delineation. As for recognition, a hierarchical 3D scale-based multiobject method is

used for the multiobject recognition task, which incorporates intensity weighted ball-scale (b-scale)

information into the active shape model (ASM). For object delineation, an iterative graph-cut-ASM

(IGCASM) algorithm is proposed, which effectively combines the rich statistical shape information

embodied in ASM with the globally optimal delineation capability of the GC method. The pre-

sented IGCASM algorithm is a 3D generalization of the 2D GC-ASM method that they proposed

previously in Chen et al. [Proc. SPIE, 7259, 72590C1–72590C-8 (2009)]. The proposed methods

are tested on two datasets comprised of images obtained from 20 patients (10 male and 10 female)

of clinical abdominal CT scans, and 11 foot magnetic resonance imaging (MRI) scans. The test is

for four organs (liver, left and right kidneys, and spleen) segmentation, five foot bones (calcaneus,

tibia, cuboid, talus, and navicular). The recognition and delineation accuracies were evaluated sepa-

rately. The recognition accuracy was evaluated in terms of translation, rotation, and scale (size)

error. The delineation accuracy was evaluated in terms of true and false positive volume fractions

(TPVF, FPVF). The efficiency of the delineation method was also evaluated on an Intel Pentium IV

PC with a 3.4 GHZ CPU machine.

Results: The recognition accuracies in terms of translation, rotation, and scale error over all organs

are about 8 mm, 10� and 0.03, and over all foot bones are about 3.5709 mm, 0.35� and 0.025,

respectively. The accuracy of delineation over all organs for all subjects as expressed in TPVF and

FPVF is 93.01% and 0.22%, and all foot bones for all subjects are 93.75% and 0.28%, respectively.

While the delineations for the four organs can be accomplished quite rapidly with average of 78 s,

the delineations for the five foot bones can be accomplished with average of 70 s.

Conclusions: The experimental results showed the feasibility and efficacy of the proposed auto-

matic anatomy segmentation system: (a) the incorporation of shape priors into the GC framework is

feasible in 3D as demonstrated previously for 2D images; (b) our results in 3D confirm the accuracy

behavior observed in 2D. The hybrid strategy IGCASM seems to be more robust and accurate than

ASM and GC individually; and (c) delineations within body regions and foot bones of clinical

importance can be accomplished quite rapidly within 1.5 min. VC 2011 American Association of
Physicists in Medicine. [DOI: 10.1118/1.3602070]
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I. INTRODUCTION

With the development of medical image processing methods

and systems, clinical radiology places increasingly greater

emphasis on quantification in routine practice. To facilitate

this, computerized recognition, labeling, and delineation of

anatomic organs, tissue regions, and suborgans, playing an

assistive role, becomes important in clinical radiology. In

spite of several decades of research and many key advances,

several challenges still remain in this area. Efficient, robust

and automatic anatomy segmentation (AAS) is one of these

challenges. Based on the interested region, the methods of

AAS can be classified into two types: anatomy segmentation

methods for the brain and anatomy segmentation methods

for the body region (skull base to feet).

The body region segmentation methods could be classified

into several types: model based,1–5 image based,6–13 and

hybrid methods.14–16 Representatives in the model-based group

are active contours models,1,2,17 active shape and appearance

models (ASM, AAM).3–5 Active contour models1,2 are capable

of modeling complex shapes via continuously deformable
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curves. The ASM/AAM (Refs. 3–5) methods use “landmarks”

to represent shape and principal component analysis (PCA) to

capture the major modes of variation in shape observed in the

training data sets. The image-based methods include graph cut

(GC),6,7 level set,8,9 watershed,10,11 fuzzy connectedness,18,19

and live wire.12,13 The GC (Refs. 6 and 7) methods have been

widely used in image segmentation due to their ability to com-

pute globally optimal solutions. Graph cuts have proven to be

useful multidimensional optimization tools that can enforce

piecewise smoothness while preserving relevant sharp discon-

tinuities. The level set8,9 method is also widely used in image

segmentation. The advantage of the level set method is that

one can perform numerical computations involving curves

and surfaces on a fixed Cartesian grid without having to

parameterize these objects. Also, the level set method makes it

easy to follow shapes that change topology. The watershed

method10,11 has interesting properties that make it useful for

many different image segmentation applications: it is simple

and intuitive, can be parallelized, and always produces a com-

plete division of the image. The fuzzy connectedness methods

have characteristics similar to those of graph cut methods and

have additional theoretical and computational advantages. The

live wire methods12,13 are user-steered two-dimensional seg-

mentation methods in which the user provides recognition help

and the algorithm does the delineation. In fact, all of the above

image-based methods operate in the same manner. Hybrid

approaches are rightfully attracting a great deal of attention

now. Their premise is to combine the complementary strengths

of the individual methods to arrive at a more powerful hybrid

method. These methods include methods such as combination

of active shape model with live wire method,14 combination of

watersheds with fast region merging methods,15 and combina-

tion of shape-intensity prior models with level sets.16

Integrating shape priors into GC segmentation framework

receives a great interest recently.20–25 For these methods, the

way of generating the shape crucially affects the success of

the segmentation, as delineation may leak into nonobject ter-

ritories due to suboptimal recognition. Vu et al.20 defined the

shape prior as energy on a shape distance with popular level

set approaches. However, the prior shape is a simple fixed

shape, which may lead to the delineation results to become

unpredictable along the weak edges. Freedman and Zhang21

incorporated a shape template into the GC formulation as a

distance function. Malcolm et al.22 imposed a shape model

on the terminal edges and performed min-cut iteratively

starting with an initial contour. These two methods need an

effective user interaction and they might possibly fall short

in handling complex shapes of arbitrary topology of 3D

objects. Leventon et al.25 integrated a deformed shape into

GC segmentation, where the shape prior is deformed based

on the Gaussian distribution of some predefined geometrical

shape statistics. However, this is not true in reality, because

pose variance and deformations are specific to the object of

interest and often having non-Gaussian distributions. Kohli

et al.23 presented an algorithm for performing simultaneous

segmentation and 3D pose estimation of a human body from

multiple views. They used a simple articulated stickman

model, which together with a conditional random field is

used as the shape prior. Lempitsky et al.24 used nonparamet-

ric kernel densities to model a shape prior and integrated

into the GC. However, the computational burdens of the pro-

posed methods are high, and the high variations pertaining to

medical images are not accurately handled. The contribu-

tions of this study are as follows: Unlike all those methods,

we propose a fully automatic method based on a hierarchical

3D scale-based multiobject recognition (HSMOR) frame-

work.26 Moreover, in the proposed methodology not only we

perform recognition and delineation directly on 3D, but also

computational cost is minimal due to without doing any

search and optimization. In addition, we don’t need to do the

shape registration due to automatic recognition/initialization.

The AAS system, we are developing consists of three

main parts: model building (training), object recognition,

and object delineation. For the object recognition, HSMOR

method26 is used for the recognition task. For the delinea-

tion, we present an iterative graph-cut-ASM (IGCASM)

algorithm, which is a 3D generalization of the 2D GC-ASM

method.27,28 The proposed methods are tested on a clinical

abdominal CT data set with 20 patients and a foot MRI data-

set with 11 images. The preliminary results show that: (a) it

is feasible to explicitly bring prior 3D statistical shape infor-

mation into the GC framework and (b) the 3D IGCASM

delineation method improves on ASM and GC and can pro-

vide practical operational time on clinical images.

This paper is organized as follows. In Sec. II, the com-

plete methodology of the proposed AAS method is

described. In Sec. III, we describe a detailed evaluation of

this method in terms of its recognition and delineation accu-

racy and efficiency on the clinical datasets. In Sec. IV, we

summarize our conclusions. A preliminary version of this

paper has appeared in the Conference Proceedings of the

SPIE 2010 Medical Imaging Symposium.28

II. GRAPH-CUT-ASM

II.A. Overview of approach

The proposed method consists of two phases: training

phase and segmentation phase. In the training phase, we con-

struct the ASM model and train the GC parameters. The seg-

mentation phase consists of two main parts: initialization

(recognition) and delineation. For the recognition part, a

hierarchical 3D scale-based multiobject recognition method

is used. For the delineation part, the object shape information

generated from the initialization step is integrated into the

GC cost computation, and an iterative GCASM method is

proposed for object delineation. The proposed flowchart of

our AAS system is shown in Fig. 1.

II.B. Model building and parameters training

For volumetric data, there are several solutions to estab-

lish landmarks’ correspondence. One popular method is to

project landmark points on a spherical coordinate system,

but this method is generally limited to convex objects.29 In

this paper, a semiautomatic landmark tagging method,
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equally spaced landmark tagging,30 is used to establish cor-

respondence among landmarks in our experiments. Although

this method is proposed for 2D objects, and equally spacing

a fixed number of points for 3D objects is much more diffi-

cult, we use this equally spaced landmark tagging technique

in a pseudo-3D manner, where the 3D object is annotated

slice-by-slice. In order to provide anatomical correspon-

dence among 2D slices of 3D objects, a careful selection

procedure was devised for use by an expert in the training

step.26 The same physical location of slices in one object

does not necessarily correspond to the same physical loca-

tion in another object of the same class. Therefore, experts

select slices corresponding to each other in terms of physical

locations within the body. This is a much simpler 1D corre-

spondence problem, which is easier and simpler to tackle

than the 2D point correspondence problem, however,

requires expert’s anatomy knowledge, which facilitates iden-

tifying portions of the organs or bones equivalent to each

other in position.

To obtain a true shape representation of the family of an

object, location, scale, and rotation effects within the family

need to be filtered out. This is done by aligning shapes

within the family of object (in the training set) to each other

by changing the pose parameters (scale, rotation, and transla-

tion). For multiple objects, the object assemblies are aligned.

PCA is then applied to the aligned N training shape vectors

xi, i¼ 1, …, N, where xi includes the coordinates of the

shape boundaries. The model M is then constructed follow-

ing the standard ASM procedure.3

The parameters of GC are also trained during the training

stage; more details on this are given at Sec. II D 1.

II.C. Anatomical structure recognition

Recognition of anatomical structures is the first step in

model-based segmentation approaches. Recognition in the

model-based approach is to locate the model in the image in

terms of pose (translation, scale, and orientation) using

shape, texture, or both shape and texture information. This

procedure involves matching model to image and calculating

pose transformations regarding to the pose difference. Once

recognition is handled, the resulted pose is used as an input

for delineation process. For recognition task, we use our pro-

posed recognition method called HSMOR.26 Critically, the

HSMOR combines coarse to fine strategies to build an effi-

cient model-based segmentation algorithm. To do so, we

incorporate a large number of structures into the recognition

algorithm to yield quick, robust, and accurate recognition.

Besides, we use scale information to build reliable relation-

ship between shape and texture patterns that facilitates accu-

rate recognition of single and multiple objects without using

optimization methods.

Different from the conventional ASM method, which

incorporates samples of image information in the neighbor-

hood of the shape boundary points, we incorporate expected

appearance information within the entire interior of the

annotated shape into the ASM after the construction of

model assembly. In order to accomplish this, first, we

encode the appearance of the gray level images to extract

hierarchical geometric patterns. This encoding process is

called ball-scale (b-scale for short) encoding.26 The main

idea in b-scale encoding is to determine the size of local

structures at every voxel as the radius of the largest ball cen-

tered at the voxel within, which intensities are homogeneous

under a prespecified region-homogeneity criterion. Although

the size of a local structure is estimated using appearance in-

formation of the gray scale images, i.e., region-homogeneity

criterion, b-scale images contain only rough geometric in-

formation. Incorporating appearance information into this

rough knowledge characterizes scale information of local

structures. Thus, it allows us to distinguish objects of even

same size by their appearance information. We proposed in

Ref. 26 hat extracting b-scale information from images to-

gether with corresponding appearance information of the

local structures can be possible by weighting the radius of

the ball centered at a given voxel with the intensity value of

that voxel. As a result, object scale information is enriched

with local intensity values.

The algorithm for intensity weighted b-scale estimation is

presented below.

Algorithm IWOSE (Intensity Weighted Object Scale
Estimation):

Input: c 2 C in a scene C ¼ ðC; f Þ, Ww, and a fixed

threshold ts.

Output: Intensity weighted b-scale r0ðcÞ at c.

Begin
Set k¼ 1

While FOk;lðcÞ � ts do
Set k to k 1 1

EndWhile
Set rðcÞ to k
Output r0ðcÞ ¼ f ðcÞrðcÞ;

End
where C ¼ ðC; f Þ represents a scene, C is a rectangular array

of voxels, and f is a function that assigns to every voxel an

image intensity value. The ball radius k is iteratively

increased starting from one, and the algorithm checks for

FOk;lðcÞ, the fraction of the object containing c that is con-

tained in the ball and l indicates the size of the voxel in all

FIG. 1. The flowchart of the proposed AAS system.

4612 X. Chen and U. Bagci: 3D automatic anatomy segmentation based on iterative graph-cut-ASM 4612

Medical Physics, Vol. 38, No. 8, August 2011



directions. When this fraction falls below the threshold ts, it

is considered that the ball contains an object region different

from that to which c belongs. Following the recommendation

in Ref. 31, ts¼ 0.85 is chosen. Finally, the ball size is multi-

plied by voxel intensity. (Ww is a homogeneity function and

we use zero-mean unnormalized Gaussian function for it,

further details on how to choose homogeneity function and

FOk;lðcÞ can be found in Refs. 31 and 32.)

Since histogram of the b-scale image contains only the in-

formation about the radius of the balls, it is fairly easy to

eliminate small ball regions and obtain a few largest balls by

applying simple thresholding to the b-scale scene. This sim-

ple observation leads to selection of larger or smaller objects

in the scene by using only a threshold interval. For example,

the first row in Fig. 2 shows different slices of the b-scale

scene of an abdominal CT image and the remaining rows

except the last show thresholded b-scale scenes obtained

using different threshold intervals based on balls’ size. We

observe that the patterns pertaining to the largest balls

retained after thresholding have strong correlations with the

truly delineated objects shown in the last row of the Fig. 2.

The truly delineated objects and patterns obtained after

thresholding share some global similarities, for instance, of

scale, location, and orientation. Patterns show salient charac-

teristics because they depend on the object scale estimation,

and they are mostly spatially localized. Therefore, a concise

but reliable relationship can be built using scale, position,

and orientation information as parameters. Note that thresh-

olding is applied not on the original images, but in a space

generated by the object scale estimation algorithm, namely

intensity weighted b-scale images. Although the range of

object scale estimation is restricted to the size of objects

retained in the scene, thresholding allows us to select the

specific object size to be retained in the scene. In other

words, a considerable amount of information is still captured

in both the spatial distribution of intensities and object scale

information of the image even if thresholding is not applied

to the original images. As easily noticed from the forth and

fifth rows of Fig. 2, the thresholded scenes have stronger cor-

relations with the corresponding truly delineated objects

shown in the last row of the same figure. Similarly, flexibil-

ity in selecting threshold intervals is a desirable property for

creating a similarity group between shape and intensity

structure system, because it allows us to avoid some of the

redundant structures and provide a more concise basis for

shape patterns.

In recognition, as the aim is to recognize roughly the

whereabouts of an object of interest in the scene, and also

since the trade-off between locality and conciseness of shape

variability will be modulated in the delineation step, it will

be sufficient to use concise bases produced by PCA without

considering localized variability of the shapes. For the for-

mer case, on the other hand, it is certain that analyzing varia-

tions for each subject separately instead of analyzing

variations over averaged ensembles leads to exact solutions

where specific information present in the particular image is

not lost. In order to find the translation, scale, and orientation

that best align the shape structure system of the model with

the intensity structure system of a given image, we learn the

similarity of shape and intensity structure systems in the

training images via PCA to keep track of translation and ori-

entation differences. We use the bounding box approach to

find scale similarity. In the bounding box approach, the real
physical size of the segmented objects and the structures

derived from thresholded intensity weighted b-scale images

are used. For orientation analysis, parameters of variations

are computed via PCA. The principal axes systems (PAS) of

the shape and intensity structure systems denoted by PAo

and PAb, respectively, have an origin and three axes repre-

senting the inertia axes of the structure. For the PAS of the

same subject, the relationship function F that maps PAb into

PAo can be decomposed into the form F¼ (s, t, R), where t:
(tx, ty, tz) is the translation component, s is a scale compo-

nent, and R: (Rx, Ry, Rz) represents three rotations. We

observe that F can be split into three component functions

(f1, f2, f3), corresponding to scale, translation, and rotation,

respectively.

II.C.1. Estimation of the scale function – f1

The bounding box enclosing the objects of interest for

each subject in the training set is used to estimate the real

physical size of the objects in question.26 The length of the

FIG. 2. Different slices of intensity weighted b-scale scenes extracted from a

CT image (female subject, abdominal region) are shown in the first row.

Second–fifth rows show corresponding thresholded intensity weighted b-

scale scenes for increasing thresholds. The last row denotes some truly seg-

mented objects of the abdominal region.
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diagonal is used for estimating the scale parameter. The

mean scale parameter s0 and standard deviation of scale pa-

rameter std(s) are used to obtain an interval for the estima-

tion. We assume that the training set captures the variability

of size differences such that the scale interval [s06 std(s)] is

used to estimate the scale of any given image.

Alternatively, volume or surface information of seg-

mented objects in the training set can also be used as scale

parameters. However, computational cost in the extraction

of volume or surface information will be higher. In other

words, if computational complexity of extracting scale pa-

rameters is denoted by O (number of voxels), it is obvious

that the number of voxels necessary for computing the vol-

ume and surface are higher than the number of voxels neces-

sary for computing the bounding box.

II.C.2. Estimation of the translation function – f2

This is solely based on forming a linear relationship

between the centroids of the objects of interest obtained

from the binary images Ii
b in the training set, and the thresh-

olded intensity weighted b-scale images obtained from the

training images. These centroids are denoted by co
i and cb

i,

respectively. By averaging the translational vector over N
subjects in the training set from cb to co, we get the mean

translation vector as: �t ¼ 1=Nð Þ
PN

i¼1 co
i � cb

ið Þ. For any

given test image, we simply estimate the centroid of objects

in it using mean and standard deviation of t.
There are a few alternatives to estimating the centroids

of shapes. The most straightforward way is as the average

of the shape points’ coordinates in the binary image. The

centroid can also be obtained by using its gray valued

image if available. Shape points’ coordinates in this case

are weighted by the intensity values of the voxels, leading

to appearance-based centroid. The goal in the latter

approach is to increase the correlation of two structures by

considering not only shape features but also texture fea-

tures. Without using textural information, two structures

may show similar centroids, although they are far apart.

Note that accuracy difference between intensity based and

shape based centroids can differ a lot based on the two

facts (1) the size of the object and (2) textural variability of

the objects. Accuracy change due to with and without

using textural information in centroid estimation for

objects with small size can vary from 1 to 5 mm (for kid-

neys with large texture variability), and up to 10 cm differ-

ence (for livers with large texture variability).

As seen from the Fig. 3, geometric centers (shown in dia-

mond) show no difference about the poses of the shapes as

the centers are in the same coordinates for both shapes. On

the other hand, appearance-based centroids (shown in

square) give more accurate information about the poses of

the shapes. Therefore, we use appearance-based centroids to

build the f2 component of F in our experimental setup.

II.C.3. Estimation of the orientation function – f3

Let the normalized principal axes systems of the shape

and intensity structure systems be PAoi and PAbi, respec-

tively, obtained from the ith training image. Since these prin-

cipal component vectors constitute an orthonormal basis and

assuming that the translation between the two systems is

eliminated from using (co
i - cb

i) estimated previously in

translation estimation step, two systems are related by

PAo¼ (R).(PAb), where R is an orthonormal rotation matrix

carrying information about the relative positions of shape

and intensity structure systems in terms of their Euler angles.

A set of N segmented training images and their correspond-

ing intensity weighted b-scale images are used to find their

PA systems so that we can relate them by computing the

orthogonal rotation matrices Ri that relate PAoi to PAbi for i
¼ 1, …, N. At the end, we have N rotation matrices describ-

ing how PAb is related to PAo for each subject in the training

set. To obtain the basic population statistics over these

N subjects, we need to compute the mean and standard devi-

ation of the N rotation matrices Ri, i¼ 1, …, N. However,

computing the statistics of circular (spherical) or directional

data is not trivial.33 Since three-dimensional orientation data

are elements of the group of rotations that generally are

given as a sequence of unit quaternion or as a sequence

of Euler angles, etc., the group of rotations is not a

Euclidean space, but rather a differentiable manifold.33,34

Therefore, the notion of mean or average as basic statistical

definitions for this particular problem is not obvious in Eu-

clidean space. In our case, in analogy with the mean in Eu-

clidean space, mean rotation is defined to be the

minimization of the sum of squared geodesic distances from

the given rotations in spherical space. Note that the mean

rotation R* is assumed to be a point on the sphere such that

the sum of squared geodesic distances between R* and R1,

…, RN is the minimum

M R1; :::;RNð Þ ¼ arg min
R�

XN

n¼1

d Rn;R
�ð Þ2G (1)

where d(.)G represents geodesic distance form in Rieman-

nian manifold and M(.) represents mean operation in the

spherical space.

Figure 4 shows smooth path across rotation on the sphere

where metric tensor is determined by arc-length. PA systems

differ from each other only by orientation as shown in the

figure. The similar colors show the corresponding Euler

angles in spherical coordinate systems.

FIG. 3. Example textured shapes. Geometric and appearance based centroids

are shown in diamond and square respectively. Region based centroids are

obtained by weighting shape points’ coordinates with the corresponding

intensity values.
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II.D. Organ delineation

The input of our delineation part is the recognized result

from the organ recognition part. We propose an IGCASM

method for the organ’s delineation. The IGCASM algorithm

effectively combines the rich statistical shape information

embodied in ASM (Ref. 3) with the globally optimal 3D

delineation capability of the GC method.

II.D.1. Shape integrated GC

For GC segmentation, we represent the image as a six-con-

nectivity graph G(V, E). Boykov’s a-expansion method6 is

used as the optimization method. In the traditional GC

method, the energy function that is minimized usually consists

of two parts: data penalty and boundary penalty terms. In this

paper, we propose a new graph cut energy function, which

additionally consists of a 3D shape term.

Eðf Þ ¼
X
p2P

ða � DpðfpÞ þ b � SpðfpÞÞ

þ
X

p2P; q2Np

c � Bp;qðfp; fqÞ; (2)

where P is the set of pixels p, Np is the set of pixels in the

neighborhood of p, a; b; c are the weights for the data term,

shape term Sp, and boundary term, respectively, satisfying

aþ bþ c ¼ 1. These components are defined as follows:

DpðfpÞ ¼
� ln PðIpjOÞ;
� ln PðIpjBÞ;

if fp ¼ object label

if fp ¼ background label
;

(
(3)

Bp;qðfp; fqÞ ¼ exp �ðIp � IqÞ2

2r2

 !
� 1

dðp; qÞ � dðfp; fqÞ; (4)

and

dðfp; fqÞ ¼
1; if fp 6¼ fq

0; otherwise ;

�

where Ip is the intensity of pixel p, object label is the label

of the object (foreground). PðIpjOÞ and PðIpjBÞ are the prob-

ability of intensity of pixel p belonging to object and back-

ground, respectively, which are estimated from object and

background intensity histograms during the training phase,

more details are given below d(p, q) is the Euclidian distance

between pixels p and q, and r is the standard deviation of

the intensity differences of neighboring voxels along the

boundary.

SpðfpÞ ¼ 1� exp � dðp; xOÞ
rO

� �
; (5)

where dðp; xOÞ is the distance from pixel p to the set of pix-

els, which constitute the interior of the current shape xo of

object O. (Note that if p is in the interior of xo, then

dðp; xOÞ¼ 0.) rO is the radius of a circle that just encloses xo.

The linear time method of Ref. 35 was used in this paper for

computing this distance.

During the training stage, the histograms of intensity for

each object are estimated from the training images. Based on

this, PðIpjOÞ and PðIpjBÞ can be computed. As for parame-

ters a; b; and c in Eq. (1), since a þ b þ c ¼ 1, we esti-

mate only a and b by optimization of accuracy as a function

of a and b and set c¼ 1-a-b. We use the gradient decent

method36 for the optimization. Accu a; bð Þrepresents the

algorithm’s accuracy (here, we use the true positive volume

fraction.37 a and b are initialized to 0.35 each, and Accu
a; bð Þ is optimized over the training data set to determine the

best a and b.

II.D.2. Minimizing E with graph cuts

Let G be a weighted graph (V, E), where V is a set of

nodes and E is a set of weighted arcs. Given a set T ( V of

k terminal nodes, a cut is a subset of edges C ( A such that

no path exists between any two nodes of T in the residue

graph G(V, E\C). In our implementation, we segment the

object by the a-expansion method.5

The graph is designed as follows. We take V ¼ P [ L,

i.e., V contains all the pixel nodes and multiple terminals

corresponding to the labels in L that represent objects of in-

terest plus the background. A¼AN [ AT, where AN is the n-

links, which connect pixels p and q p 2 P; q 2 Np

� �
and

FIG. 4. The shape and intensity structure systems, PAo and PAb, are shown in

the spherical coordinate system with their Euler angles drawn in similar colors.

Any orientation difference between the PA systems requires the computation

of another orthonormal rotation denoted Rob, which rotates the shape structure

system into alignment with the intensity structure system on the sphere.

TABLE I. Different numbers of landmarks for different objects are listed.

CT-data Number of landmarks MRI-data Number of landmarks

Skin 75 Skin 70

Liver 35 Calcaneus 35

Left kidney 20 Talus 35

Right kidney 20 Tibia 35

Spleen 25 Cuboid 35

— — Navicular 35
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with a weight of wpq. AT is the set of t-links, which connect

pixel p and terminals, ‘ 2 L and with a weight of wp‘. The

desired graph with cut cost jCj equaling E(f) is constructed

using the following weight assignments:

wpq ¼ c � Bp;q (6)

wp‘ ¼ K � a � Dp ‘ð Þ þ b � Sp ‘ð Þ
� �

; (7)

where K is constant that is large enough to make the weights

wp‘ positive.

II.D.3. IGCASM

For IGCASM, we assume that the recognized shapes are

sufficiently close to the actual boundaries. It then deter-

mines what the new position of the landmarks of the

objects represented in xin (initialized shape results) should

be such that the minimum graph cut cost is the smallest

possible.

Algorithm IGCASM:
Input: Initialized shapes xin.

Output: Resulting shapes xo and the associated object

boundaries.

Begin
While number of iterations< k do

Perform GC segmentation based on ASM shapes xin

(one object at a time);

Compute the new position of the landmarks by mov-

ing each landmark in xin to the point closest on the

GC boundary of the corresponding object; call the

resulting shapes xnew;

If no landmarks moved, then set xnew as xo and break;

Else subject xnew to the constraints of model M, and

set the result as xin.

EndWhile
If number of iterations¼ k, set xin as xo.

Perform one final GC segmentation based on xo, and

get the associated object boundaries.

End
From our experimental results, we found our algorithm is

usually ended before three iterations due to good recognition

results. Based on that, we set k¼ 6. It means “stop” hap-

pened at most time. Landmarks usually moved far (5–6 pix-

els) at the beginning and less (1–2 pixels) at the end.

One may surmise, if it is possible to analyze theoretically

if the altered GC formulation obeys the submodularity crite-

ria. Although the achieved results by the proposed method

strongly indicates that the proposed GC functional is sub-

modular, it is very difficult to take the analysis all the way

through since the parameter space depends not just on the in-

tensity characteristics of the images but their spatial distribu-

tions and the shape characteristics. The submodularity

analysis of the proposed GC functional is outside the scope

of this paper and will be regarded as a future extension of

this work.

FIG. 5. (a) A CT slice of the abdominal region with selected objects (skin, liver, spleen, and left and right kidneys) is shown on the left. Annotated landmarks

for the selected objects are shown on the right. (b) An MRI slice of the foot with selected objects (skin, navicular, calcaneus, tibia, talus, and cuboid) is shown

on the left. Annotated landmarks for the selected objects are shown on the right.

FIG. 6. Mean shape is generated using 3D-ASM for multiple objects of the abdominal region. (a) Mean shapes of liver, spleen, right and left kidneys. (c) Mean

shapes of calcaneus, talus, tibia, navicular, and cuboid. (b) and (d) Mean shapes of skin boundaries for the objects presented in (a) and (c), respectively.
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III. EXPERIMENTAL RESULTS

In this section, we demonstrate qualitatively, through

image display, and quantitatively, through evaluation experi-

ments, the extent of effectiveness of the IGCASM. Perform-

ance of the proposed methodology has been evaluated on

two datasets: male and female abdominal organs in low-re-

solution CT images pertaining to 20 patients, and foot MR

images pertaining to 11 patients. Our method of evaluation,

based on the framework of Ref. 37 will focus on the analysis

of accuracy, and efficiency of IGCASM. We will consider

manual segmentation performed in these different data sets.

We used a manual delineation method to constitute a surro-

gate of true segmentation. For all the data sets, expert radiol-

ogists labeled the data in a semiautomatic way using the live

wire method12 in pseudo-3D manner (slice-by-slice).

III.A. Image data sets and model building

For CT images, we used whole body PET-CT scans of

ten female and ten male patients, who underwent prior ab-

dominal CT imaging for clinical purposes in University of

Pennsylvania. The voxel size of the CT images is 1.17

mm� 1.17 mm� 1.17 mm (interpolated from 5 mm slices).

Due to all clinically important reasons, we focus on selecting

FIG. 7. (First column) the model assembly (MA) is overlaid with the organs/

objects of one subject prior to recognition. (Second column) positioned MA

for the subject is shown after recognition.

FIG. 8. The experimental results for multiorgan segmentation are shown in three different anatomical levels for CT abdominal dataset. The first column shows

original images slices; the second column indicates the recognized organs; and the third column shows the delineation results yielded by the proposed

IGCASM. The contours in third column shows manually delineated organ boundaries. All of the images have been cropped for the best view and original

image size is (512� 512).
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as many healthy organs as we can select from the abdominal

regions of individuals attended the scanning sessions. Selec-

tion process had been performed with the help of experts,

who were with expertise in supervising and interpreting radi-

ology examinations, and then, we have selected the follow-

ing four objects from each subject: liver, left kidney, right

kidney, and spleen. Body skin is also considered in our study

to constraint the search space for the four selected objects.

TABLE II. Quantitative measure of the proposed recognition method.

Quantitative

measures

Mean translation

error (in mm)

Mean orientation

error (degree)—(x)

Mean orientation

error (degree)—(y)

Mean orientation

error (degree)—(z)

Mean

scale error

Female abdominal data 8.0133 6 1.9666 0.6319�6 3.3861 0.3611�6 4.0832 0.2789�6 9.4338 0.0360.0100

Male abdominal data 10.7566 6 1.9276 0.0938 6 12.0647 0.3208 6 3.0894 0.6203 6 3.5691 0.05 6 0.0250

Foot MRI 3.5709 6 4.2200 0.0292 6 0.7088 0.3576 6 2.0739 0.0209 6 9.4049 0.0256 0.0050

FIG. 9. The experimental results for multiorgan segmentation are shown in three different anatomical levels for foot MRI dataset. The first column shows original

images slices; the second column indicates the recognized organs; and the third column shows the delineation results yielded by the proposed IGCASM. The con-

tours in third column shows manually delineated bone boundaries. All of the images have been cropped for the best view and original image size is (512� 512).
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In addition, we also used 11 sets of MR foot images to con-

duct segmentation experiments. Magnetic resonance imaging

(MRI) becomes widespread in the diagnosis and treatment of

many musculoskeletal diseases of the ankle and foot. Anatom-

ical structures in the bones and soft tissues are demonstrated

before they become evident at other imaging modalities. The

data were acquired on a commercial 1.5T GE MRI machine,

by using a coil specially designed for the study.38 During each

acquisition, the foot of the subject was locked in a nonmag-

netic device. This allows the control of orientation and the

motion of the foot. The imaging protocol used a 3D steady-

state gradient echo sequence with a TR/TE/Flip angle¼ 25

ms/10 ms/25�. The voxels are of size 0.55� 0.55� 0.55 mm3

(interpolated from slices 1.5 mm apart). The slice orientation

was roughly sagittal. Apart from the skin body, we select all

the bones clearly seen in sagittal orientation, i.e., talus, navicu-

lar, calcaneus, cuboid, and tibia.

Different numbers of landmarks are used for different

objects considering their size, as listed in Table I. Figure 5

shows annotated landmarks for five different objects (skin,

liver, right kidney, left kidney, and spleen) in a CT slice of the

abdominal region, and six different objects (skin, talus, navic-

ular, calcaneus, cuboid, and tibia) in a MRI slice of the foot.

Figure 6 shows multiobject 3D ASMs for the abdominal

organs and foot bones. Note that the mean shapes of the

objects do not have any overlap among them. This is

because, in the training part, objects are not aligned sepa-

rately, their spatial relations before and after alignment do

not change.

III.B. Recognition

Figure 7 demonstrates the effectiveness of the recognition

method by displaying the abdominal organs and the MA for

one particular example. Figure 7 (left) displays 3D surface

renditions of the organs and MA before the recognition

method is applied. Figure 7 (right) similarly shows 3D rendi-

tions of the organs and the MA after the recognition method

is applied. Note that the differences between the principal

axes and the centroids of the objects in the left are reduced

considerably in the right.

The recognition results for one particular patient in three

different anatomical levels were shown in second column of

Fig. 8. Note that slices of organs or objects in the beginning or

end of stack may not have significant overlaps with the model;

however, this situation never exceeds a few slices. As previ-

ously mentioned, aim in this step is to roughly localize the

model to the data so that delineation can capture local details.

We can observe that the recognition results are pretty good by

visual checking. In addition to the qualitative results, we report

the recognition accuracies in terms of quantitative measures.

Table II summarizes the recognition results in three categories:

mean translation error, mean orientation errors in three direc-

tions, and mean scale error showing size differences among

objects from different subjects. We can find that all the objects

are recognized with the mean translation error less than 8 mm,

and their orientation errors are less than 10�, even much

smaller in x and y directions. A possible reason for this is that

the spatial resolution in the z direction is lower than in other

directions. For the scale component, since initially we align all

FIG. 10. Three different views of delineation results for three examples: CT abdominal organs by IGCASM.
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the objects in seven-dimensional affine space as described in

landmarking process, the size differences within the subjects

are uniformly handled. Very tight interval is obtained for the

scale range, which is reported as (0.97–1.07) on average and

the mean scale error is about 0.03.

III.C. Delineation

Figures 8 and 9 show the delineation results for one par-

ticular patient in three different anatomical levels for CT and

MRI dataset, respectively. Furthermore, Figs. 10 and 11

show 3D views of delineation results by IGCASM from

three different views on three examples for CT and MRI

dataset, respectively. We can observe that the delineation

results are pretty good by visual checking.

In addition to the qualitative results, we also report delin-

eation accuracies in terms of quantitative measures. Here,

we focus on the analysis of accuracy and efficiency of

IGCASM and compare it with ASM. Accuracy relates to

how well the segmentation results agree with the true delin-

eation of the objects. Efficiency indicates the practical via-

bility of the method, which is determined by the amount of

time required for performing computations.

The results of delineation accuracy are expressed in true

positive volume fractions (TPVF) and false positive volume

fractions (FPVF).37 TPVF indicates the fraction of the total

amount of tissue in the true delineation by the method. FPVF

denotes the amount of tissue falsely identified by the method.

The delineation results are expressed in Table III. We can find

that comparing with ASM method, the delineation accuracy

FIG. 11. Three different views of delineation results for two examples: MRI foot bones by IGCASM.

TABLE III. Mean and standard deviation of delineation results as TPVF, FPVF for 3D ASM, and IGCASM on CT abdominal and foot MRI data.

TPVF(%) FPVF(%)

Data set 3D ASM IGCASM 3D ASM IGCASM

Liver 82.52 6 1.93 92.16 6 1.03 0.96 6 0.11 0.25 6 0.06

Left kidney 86.15 6 1.51 93.39 6 0.96 0.85 6 0.12 0.19 6 0.05

Right kidney 85.36 6 1.52 93.55 6 0.92 0.89 6 0.13 0.20 6 0.03

Spleen 84.32 6 1.88 93.47 6 1.28 0.91 6 0.16 0.23 6 0.07

Average on four organs 84.59 6 1.71 93.01 6 1.05 0.90 6 0.13 0.22 6 0.05

Calcaneus 83.76 6 1.86 94.63 6 0.91 1.03 6 0.27 0.33 6 0.12

Talus 84.32 6 1.36 94.89 6 0.97 0.92 6 0.35 0.27 6 0.09

Tibia 82.85 6 1.91 92.36 6 1.27 1.21 6 0.29 0.28 6 0.06

Cuboid 82.22 6 1.95 93.68 6 1.11 1.12 6 0.32 0.25 6 0.08

Navicular 83.65 6 2.12 93.17 6 1.29 1.16 6 0.36 0.26 6 0.07

Average on five bones 83.36 6 1.84 93.75 6 1.11 1.07 6 0.32 0.28 6 0.08
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by proposed IGCASM gets much improved. The accuracy for

kidneys and spleen segmentation can be achieved about

93.5% in TPVF, and 0.21% in FPVF; and the delineation ac-

curacy for liver segmentation is about 92.1% in TPVF, and

0.25 in FPVF. The accuracy for calcaneus and talus segmenta-

tion can be achieved about 94.6% in TPVF, and 0.30% in

FPVF; and the delineation accuracy for cuboid, tibia, and na-

vicular segmentation is about 93.0% in TPVF, and 0.25 in

FPVF. It is important to notice that the segmentations for

these organs and bones are done simultaneously. Here, not

only the accuracy of IGCASM is better than those from ASM

but also it provides more comprehensive recognition strat-

egies to initiate the delineation algorithm without doing any

search. We did not show the accuracy for GC as the tradi-

tional GC method is not a fully automatic method, rather an

interactive method, and input seeds are required manually. If

we compare our proposed method to traditional GC but now

without inputting seeds to make it fully automatic, the per-

formance is predictably very poor. The whole delineation pro-

cess for these four organs and five foot bones takes only about

78 and 70 s, respectively, on average on an Intel Pentium IV

PC with a 3.4 GHZ CPU machine. Notice that this time does

not include the time required for recognition, which is around

50 s on average. In addition, the running time of the delinea-

tion is comparable to the traditional ASM searching method,

which is about 70 s for abdominal organs, and 65 s for foot

bones.

IV. CONCLUDING REMARKS

We propose an automatic anatomy segmentation

method for the body region. The AAS system, we are

developing consists of two main parts: object recognition

and object delineation. In this paper, a hierarchical 3D

scale-based multiobject method is used for the multiobject

recognition task. For object delineation, an iterative graph-

cut-ASM algorithm is proposed, which effectively com-

bines the rich statistical shape information embodied in

ASM with the globally optimal delineation capability of

the GC method. The presented IGCASM algorithm is a 3D

generalization of the 2D GC-ASM method that we pro-

posed previously in Ref. 27. The proposed methods are

tested on a CT dataset comprised of images obtained from

20 patients of clinical abdominal scans and a foot MRI

dataset with 11 patients. Our goal was to segment the liver,

spleen, left kidney, and right kidney simultaneously for

abdominal CT dataset, and calcaneus, tibia, cuboid, talus,

and navicular for foot MRI dataset. The recognition accu-

racies in terms of translation, rotation, and scale error over

all organs are about 8 mm, 10� and 0.03, and over all foot

bones are about 3.5709 mm, 0.35� and 0.025, respectively.

The accuracy of delineation over all organs for all subjects

as expressed in TPVF and FPVF is 93.01% and 0.22%, and

all foot bones for all subjects are 93.75% and 0.28%,

respectively. In summary, the experimental results show:

(a) the incorporation of shape priors into the GC frame-

work is feasible in 3D as demonstrated previously for 2D

images; (b) our preliminary results in 3D confirm the accu-

racy behavior observed in 2D. The hybrid strategy

IGCASM seems to be more robust and accurate than ASM

and GC individually; (c) delineations within body regions

of clinical importance can be accomplished quite rapidly

within 1.5 min.

In this paper, as for the recognition method, the multiob-

ject strategy39 is applied. As demonstrated in 2D images,39

with increasing the number of objects in the model, both rec-

ognition and delineation accuracy can get significantly

improved. Here, the skin object is included in the model to

help the organ initialization.

Some more ideas underlying IGCASM can be further dis-

cussed. In this paper, we proposed a hybrid method

IGCASM, which combines the model-based method (ASM)

and image-based method (GC), and aim to combine the com-

plementary strengths of ASM and GC. For the recognition,

we incorporate intensity weighted b-scale26 information into

the ASM model. This is accomplished by b-scale encod-

ing.26 With the intensity weighted b-scale information, it can

distinguish the objects of even same size. Actually this is a

bit similar to the concept of the active AAM. By combing

GC with AAM,40 the whole system performance of recogni-

tion and delineation accuracy may get improved due to more

texture information contained in AAM model than ASM

model. These will be investigated in the near future. In this

paper, we have not addressed the issue of handling abnor-

malities due to diseases or treatment. We believe that model-

ing should be (and perhaps can be) done only of normality,

and through its knowledge, abnormality should be detected

and delineated in given patient images. This is a topic of our

current research.
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